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We referred to several different books in this citation, namely [1][2][3][4].



1 The Classical Action

1.1 Exercise 1: First step

The function f changes in both x; as well as in z2, so when we write the change in the function ¢ f, we have to consider each
individual change of the function in terms of x1 and z3. To do this, we multiply the gradient of the function 9f/0z; times
x; to get the change and we do this for each x; and z5. Therefore,

of + iz 25f

6f = ox .
! o Oy

(1)

1.2 Exercise 2: Second Step
We consider the change in action. By applying equation (1)

5S =10 (/tt L(z, ;ic,t)dt) 2)

ty
= [ sLdt (3)

ta

8L (‘3L

We can apply integration by parts to the second term. Using the below formula

/ wdv = 1w — / vdu, (5)
(5 () ®

Note that the first term vanishes as dz(t,) = dz(tp) = 0. We want action to minimized, so S = 0 which means

OL d (0L

we say that u = % and v = . Hence,

oL
0S = dr—
5 x@x

1.3 Exercise
The lagrangian is L = Kinetic energy - Potential energy. Assuming a point of reference where the potential energy is U(z),
we can say the lagrangian consists of only kinetic energy, or
1
L= 5ma’;“' —Ul(x) (8)
From equation (8) and equation (7), we have

8 it (8 ) -

The first term becomes OU/dz because kinetic energy is only dependant on & and potential energy is dependant on z.
Similarly, the second term becomes ma for the same reasons. Hence, we finally yield

oU (x)
 ox

As the negative gradient of potential energy is force and & = a, we yield

=mi (10)

F = ma. (11)

1.4 Exercise

If there is no external force, then we say that the potential energy is 0 as the negative gradient results in force. So, we
consider the action of only the kinetic energy component.

"1 (@ —wa)?
S = mxzdt Lol (12)
ty — tg

ta



1.5 Exercise

We consider the change of the hamiltonian with respect to time. If it is equal to zero, then the Hamiltonian does not change
and the potential energy does not change on velocity or time explicitly.

dH _ 0L  .d <8L) drL (13)

" Tor Tta\er ) T @

We know that the change in lagrangian with respect to time is zero, so the third term vanishes. By equation (7), the first
two terms vanish since:

oL _d (oL _, , .o0L .d oLy oL .d oL\ (14)
or  dt\oz) " Tor Taw\ox) " Tor Tat\oi)”
Hence,
dH
5 =0 (15)

and our statement is proven. If the potential energy does not depend on %, then 9L/9% is only dependent on kinetic energy
T. As T = imi?, then #(9L/di) = @(mi) = ma?. Hence, the Hamiltonian can be rewritten as

) 1 ) 2
_ 2 2 _ I
H=mz mi= 4+ V(x) = - + V(z). (16)



2 Path-integral in Quantum Mechanics

2.1 Exercise

We know that the action is given as
tp

S = 5 L(x, &, t)dt = Alir_r)loz LAt (17)
The lagrangian has units of energy as it is given as the difference of kinetic and potential energies. Therefore, the action has
units of Energy x time. Planck used A when describing the blackbody spectrum. The energy of a photon given by this is

E
E=hw = h=—. (18)
w

Frequency has units of 1/time. Therefore, Planck’s constant has units of Energy x time as well.

2.2 Exercise

Let us suppose that the alpha particle is a free particle. From a quick internet search, we found that the typical range of
alpha particles in the air is about 4 centimeters, they travel at about v = 0.05¢, and have a mass of 4 amu (6.64 x 10727 kg).
We will say that the speed is not fast enough to use special relativity (usually we do this when the speeds are about 0.1c).
So, as derived in exercise 1.4, the action is, when assuming (and neglecting units) ¢, = z, = 0:

1 2?
S=_m=-t. 19
2", (19)
The total time taken follows kinematics, where
dx Tp
=— = t, = . 20
BT >~ 0.05¢ (20)
Hence,
1 1
1Ty = 5(6.64 x 10727)(0.05 x 3 x 10%)(0.04) = 1.99 x 1072! J . (21)

Using Planck’s constant i = 6.62 x 10734 J - s, the ratio S/h = 3 x 1012 which is massive. As S > h, we can safely say that
the alpha particle is within the classical limit.

2.3 Exercise

The fact that normalization is independent of path implies that the transition amplitude is somehow also independent of
the path the particle ”actually” takes. Thus, in some sense, the particle is taking all the paths simultaneously. In order for
this to be a proper probability, it must have magnitude 1 when considering the amplitude between all points, and so a path
independent factor must be multiplied dependent only on the endpoints, which is the normalization constant.

2.4 Exercise

We must have A be related to € because it is path independent. As all other variables are integrated over, it can only depend
on the time at the endpoints meaning that it can only be a function of the time interval. Furthermore, it must be a function
of € and not some other combination like t3 — 2 since the interval must be invariant under a time shift t — ¢ +c, as otherwise,
calculating an amplitude with the same setup at a later time will yield a different value.

2.5 Exercise

We know that the phase factor is given as ¢/ which means the phase is ¢ = S /R since the phase factor is in the form €.

The phase difference is then

So— S
Ap = % (22)
On path 1, the action is given as S; = %mv%t where v;1 = D/t. On path 2, the action is given as Sy = %mv%t where
ve = (D+d)/t. Asd < D, v=wv; = vq as said in the problem. This then means that, in general, S = mt52 where s is an
arbitrary distance that is not specified. Keeping only terms in order d/D, we find that
Dd
Sy — ) = %((Der)?—DQ) ~ mT ~ mud. (23)

Therefore, using A = h/p and i = h/2m, we can write the phase difference as

So—S1  2mpd 2md
Ap=——~ —— &~ —.
¢ h h A



2.6 Exercise I

From equation 28 in the packet, we know that
oo
V(xp, ty +€) = / U(zp,to + € xa,ta)0(Ta,ta)dx,
— 00

We can write the propagator as below. For a small time interval €, we can skip the inner integral.

1 - da a
Vot it = S (1 (222 2ot 0,

A € 2 2

The lagrangian can be written as the sum of kinetic and potential energy components. Thus,

- 4a a ]- - a2
L(SEb x ,x +xb7ta+6)m(”’x)v<xb+",ta+;>

€ 2 2 2 €2 2
2
_mn n €
=22 T ("”Hi’t”i)

Now, substituting this propagator into (214) yields

1 [ ie [mn? 7 €
vontt )= [ ew {5 |5 = (et Dotat §)] oo+t
2

N i _ PG
_A/_Ooexp{ T }exp{ heV(xb—i-Q,ta+2>}1l)($b+17,ta)d77

2.7 Exercise II
The first integral on the righthand side is just

e immn? [2mihe
/ exp{ 2712 }dn: o

/ e~ dx = /7,

—00

oo

o2 ™
/ e dr=4/—
oo V a

by u—substitution. Looking at our equation now, we have

V(xp,ta) - = %[1 — %eV(gcb,ta)] (’L/}(xb,fa)” 27:?6 +.. >

1 [2mihe 2mihie
Y(@p,ta) = D@ ta) 5 = A= ,

m m

Note that this is since,

then we know the integral

Comparing both sides, we see

(29)

(30)

(32)

(33)



3 Free Particle Propagator

3.1 Exercise

For a free particle (zero potential),

ti ti 1
S; = / dtL = / dt=mv?. (36)
ti—1 ti—1 2

i

Assuming constant velocity between the segments, we have

S —/ dt = 2im)’ (37)

b At2
A4t (zi — Iz‘—1)2
= At2m7At2 (38)
m 2
= (- m ) (39)
where
At =t; —t;—1 = (ty —to)/N. (40)

3.2 Exercise

All the following integrals will be evaluated over (—oo, 00), but for the sake of notation, the bounds will be omitted.

U(zpn,tn; o, to) = / /dxl drn_ 1exp{h5} (41)

Using our expression for the free particle action for each segment, we get

£) / / dxl...de_lexp[;S] (42)

N
/ /dxl .dxn_1exp [;ZS}] (43)
i=1
) N
:C(t)/.../dxl...de,l exp Q;TZtZ(wl—xll)Z} (44)

We will now switch variables from the original position variable x; to a position variable which determines position relative
to the classical path Z:

y(t) = a(t) - (1), (45)
The classical path for a free particle is given by
() =m0 + 20 (£ — 1) (46)
tny — to

Since the classical and quantum paths coincide at ¢y and ¢y, we have

y(to) = y(tn) = 0. (47)

In these coordinates,
T=I+7y (48)
= INT %0 (49)

tn — to
and so
N R T .
S = / dt§m:ic2 = / dt§m(£2 + 22y + 9. (50)
to to

The first term of this integral is
1 (znv— 350)2
—m——. 51
2" iy — 1o (51)



The second term evaluates to zero due to integration by parts, (47), and the Euler-Lagrange equations
i=0. (52)

The last term is equivalent to the action for the free particle in the original coordinates with boundary conditions given by
(47). Furthermore it is given in the packet that
[ Platv) = [ Dlyte) (53)

for these coordinates, and so the total path integral in these coordinates is given by

0 / / dxl...delexp{;iS} (54)

im (xy — xo) 1
= C(t dyy...d
C()QXP[Qh — }/ / Yi...dyn— 1exp{h/2 y} (55)
By using our expression (44) for the action in the path integral with the variable y, we get
im (rn — xo) 1,

t dy;...d -

C()GXP{QH F— ]/ / Y1...dyn— 1exp[h/2my] (56)
im N — {,CO 2

e L mgx y n] 67)

im (zn — x0)? 2 2 2
=C(t —_— vo [ dyp...dyn— — (2 2y5...+ 2 -2 -2 e —2YynN— —1)|. (58
()eXP[Qh P— }/ / Yi...dyn 16Xp{2hAt( Yi +2y5- 2N 1 — 20192 — 2ys yn—2yn-1)|. (58)
To simplify notation, let us define .
im
- 2hAt (59)
Using the formula (derived from the Gaussian integral by completing the square and doing a u-substitution)
1/2
1 2
/exp {—aa:Q + Jx] dx = (W) e’ /2, (60)
2 a
we can evaluate all the integrals.
Isolating just the terms with y;, the integral over y; becomes
/dyl oxp [2ky} — 2ky1ya]. (61)
Letting
a; = —4k, J1 = —2kys, (62)
we get that this integral is
™ 1/2 k2
_= —ky3/2 63
( Qk) ¢ (63)
The integral over y, then becomes
3
/ dys exp[Qkyﬁ - 2k9293]~ (64)
Again, letting
Ay = —Sk, JQ = —Qkyg,, (65)
we get that this integral is
2 12 —2kyZ2/3 (66)
- e s/,
3k
From these expressions, we may guess that
n+1
an, = —2k I = —2kyni1 (67)
n



for 1 <n < N —1. The equation for J,, holds because the only factors added to the exponents are of form J2_, /2a,,_1 which
are quadratic in y, and thus cannot impact the linear terms already present in (58). We can verify the equation for a,, with
induction. This formula obviously holds for n=1. Noting that

1 J? 4k? n+2
——api1=2k+ —"%— —a 1:—4k—:—2k< > 68
gt Byl ok (25 Wi (68)
The first equation was acquired by remembering that —a,,11/2 was the coefficient of y2 11 in the Gaussian integral and by
2
noting that the original coefficients for all y,, was 2k. We then simply add the factor of #, which arises from the
nYnt1

calculation of the Gaussian integral for y,,. Since we only care about the coefficient of 32 11, we divide this factor out in the
equation.

Since in these coordinates yxy = 0, we get that Jy_1=0. Before this point, the factors of exp[Jg/Qa} only contribute to the
calculation of a and thus do not impact the value of the integration. Thus, the total value of all the integrals over yi...yn—_1

will just be
im X N=1 1o \1/2
2|
/.../dyl...dyN_l exXp| oo E (yi — Yi—1) ] = <an> . (69)

i=1
Inserting the formula for a, and pulling out the constant factor, we get

The product is simply

(71)

Putting everything together and inserting the value of k, we get

A o
Utex twian.to) = (0 (TS0 ) © o G = 20k (72)

m tny —to

In order to find the normalization factor C(t), we note that

lim U(Z‘N,tN;xo,to) = (5(.1'1\[ — 330), (73)
At—0

as the particle must approach the initial position as the time interval shortens. Integrating this over z, we get

lim C(t) (Mhm)g ~ 1. (74)

At—0 m

The extra factor of \/27wih(ty —to)/m = \/2mihNAt/m comes from the Gaussian integral over the exponential in the
. 2 . 2
propagator. Furthermore, the exponential due to ;a2 gets precisely cancelled due to the factor J?/2a = — 553 which

comes from the Gaussian. To have this properly normalized, we must have

m \N/2
clt) = (27rhz‘At) (75)
We thus get
) _ m 1/2 im (zy — x9)*
U(zn,tn;xo,to) = (m) eXp[thNto ) (76)

where the factors of C(t) have cancelled out the factors from the integration. Noting that NAt = ty — to (the total time
interval), we get the final expression for the free particle propagator:

Uiemetnsannte) — ()" p i lan = 20)? (77)
N>UN;L0y00) = 27Thi(tN_tO) P 2h tn —to .

10



4 Schrodinger’s Equation from Path Integrals

4.1 Exercise

t
1
S = imvz — V(x)dt' (78)
to
Using the short-time constant-velocity approximation, this becomes
1 622 ox méx? ox

where z( is the initial position, dz = x — xq is the change in position, and 6t =t — t¢ is the change in time. Due to the short
time scale, the potential is evaluated at the mid-point of the interval, given by ¢+ dx/2. With this, the propagator is simply

iméx® iV (zo + 22
U(zo + 0z, to + 0t; 2o, to) :C(t)exp[ onst ( Oh 2 )5t . (80)
4.2 Exercise
The first order expansion for V(zg + %) is
ox ox dV
The propagator can be split into kinetic and potential parts:
U(xzo + 0z, tg + 0t; 20, to) (82)
iméx? iV (v + %)
=C(t) expl ohor - 5t (83)
iméax? iV (zo + 2F)

In this expression, we will replace V' (xo + %‘) with V(z), as the second term in the first order expansion of V(z¢ + %‘) will
be second order in infinitesimals when multiplied with the factor of d¢ in the exponential in the propagator. Expanding the
potential part, we get

iV (xo) iméx?
. = 1 — .
U(zo + 0z, to + 0t; x0, to) = C(t)[ - t] exp[ T (85)
In view of the integrals cancelling the normalization factor and the results of exercises 2.6.1 and 2.6.2, we will avoid expanding
imdz?
eXp{ 2hdt }

4.3 Exercise

From exercise 2.6.2, we know we can change variables to 7 = dx, and that if 7 is small, we can treat the integral as though only
the exponential contributes. Using this approximation and inserting our expansions for the propagator and the wavefunctions,
we get that

iV (20) 1 2M] exp [imnﬁ . (86)

Vi, t) = C(O)[1 — ——=d1] /dn[w(afo,to) T 2 ohot

Evaluating the Gaussian integrals gives

. . 1/2 . 3/2 a9
W, t) = CO[1 - ZV(IO)at]{w(zo,to) (%;fét) 4 %\/% <m5t> 9o, o) @”(%vto)} (87)

h m 0x?

where the formula 3/2
9 im&? ihot
25— Vo (222
/d§§ eXp[Qhét} 7T< - (88)
was used, which can be derived by differentiating (60) with respect to a. To figure out the normalization factor C(t), we take

the small 6¢ limit, in which case the terms with factors of higher powers of ¢ (3/2 vs. 1/2) are significantly smaller than the
other terms. In this case,

- 1/2
7rzh(5t> . (89)

(w0, t0) = Ot (0, to) (

11



Note that v (z,t) was replaced by ¥ (zg,tp), as when the time interval decreases, the time evolving wavefunction approaches
the initial state. With this equality, it is clear that

m N\ 1/2
) = (i) (00
Inserting this equation into (87), expanding, and removing terms second order in 6t finally yields
) 1hot 82w(330, to)
Y(x,t) = (0, t0) — ﬁv(xo)iﬁ(xo?t)ét o o2 (91)
This can be rearranged to
Y(z,t) — P(zo,to) i ih 9*y(xo,1t0)
=—=V t)+ —————. 2
Taking the limit 6t — 0 and multiplying by ih, we finally recover the Schrédinger equation:
. 8¢($,t0) h2 82

12



5 Harmonic Oscillator Propagator

5.1 Exercise

i. = —Aw? sin(wt) — Bw? cos(wt) = —w?x,
Using the equation
g(x)
f(x) :/ h(z,t)dt

s(z)
df 9(z) dg ds
- Ouh(z, t)dt + h(z, g()) S — h(z, s(z)) >,
e = [ e s b g 5 — b s(@)

and setting x =t, t =, h(t,t') = sin(w(t —t)) f(t'), g(t) =t, and s(t) = ¢, in the formula, we get

1 cos(w(ta —t)

L )
P m sin(w(ty, — ta))
)
)

/t b sin(w(ty — ") f(t")dt' + %[/t weos(w(t — ) f(t')dt' + sin(w(t —t))f(t)]

1 cos(w(ta — 1)
m sin(w(ty — tq)

/tbsin(w(tb—t’))f(t’)dt’—i—l cos(w(t — ) F(¥)dt'.

a mJq,

Using the formula again, we get

m sin(w(ty — tq)

ip:_i sin(w(ta — t) /bsm tb—t))f(t’)dt’—%[/t wsin(w(t — ') f(t")dt’ + cos(w(t — t)) f(t)]

1 sin(w(te — 1)) ,,it. / o 1 @)

o sin(e(t, — 1) sin(w(ty, — ")) f(t")dt m/tawsm(w(t ) f(tdt + -
:_J%+f@.
m

At t, we have
x(ty) = Asin(wt,) + B cos(wty).

(99)
(100)

(101)

(102)

The factors in x, are zero at this time because sin(w(t, — t)) will be zero and the bounds of the second integral will match

and the integral will vanish. At ¢, we have

1 sin(w(t, —tp))
x(ty) = Asin(wty) + B cos(wtp) + mw sin(w(ty — t,))

ta

= Asin(wtp) + B cos(wtp) — %/ ' sin(w(ty, — ")) fF(t")dt' + % / b sin(w(ty — ")) f(¢")dt’

= Asin(wtp) + B cos(wtp).

Since x(t,) = x4 and z(tp) = zp, we can solve for A and B in terms of these variables:

xq sin(wty) = Asin(wt,) sin(wtp) + B cos(wt,,) sin(wtp)
xp sin(wt, ) = Asin(wt,,) sin(wty) + B sin(wt,) cos(witp).

Subtracting these equations and factoring out B yields

xq sin(wty) — zp sin(wty)

cos(wt ) sin(wtp) — cos(wty) sin(wt,)

Doing the same for A yields
B xq cos(wtp) — xp cos(wty)

cos(wtp) sin(wt,) — cos(wt,) sin(wty)

5.2 [Exercise
When f(t)=0, the action for each segment becomes

mw

- %T(w’f)[cos(wﬂ(xi + a2 _1) = 2@pan_1),

13

/ " sin(w(ts — ) f(t’)dt’—i—i /t " sin(w(ty — ) f(€)d (103)

(104)

(105)

(106)
(107)

(108)

(109)

(110)



since all the integrals with factors of f(¢) will vanish. Then the kernel (propagator) is just

N
Z[cos(wT)(xfl + 22 1) = 2z,mn ]| (111)

n=1

1mw

K:C(T)/.../d:cl...dzN_leXp W(WT)

We will redefine x, = g, x, = . Again, let us switch to coordinates

y(t) = w(t) — & (t). (112)
Here the classical path is given by
I =z, (113)
The Lagrangian in these coordinates becomes
1 ) 1 2_92 > . _ 1 -2 1 2.2
L= (imx - mwT ) + (mZy — mwTy) + (imy —gmwty ). (114)

After integrating, the second term is zero due to integration by parts, the boundary conditions for y, and the equation of
motion:

/dt(miy — mwTy) = m:?y@g;\])) - m/dty(fi +w?Z) =0 (115)

The action thus becomes
Se1 + Sn (116)

where the action for each segment S,, is now in terms of y instead of x:

mw
= leos(@T) (Y2 + ¥2_1) — 2Untn_1). .
Sn 2 sin(wT) [cos(wT) (Y, + Yn—1) YnYn—1] (117)

Again, in these coordinates,
Yo =yn =0. (118)
Bringing the factor of eXp[%S’Cl] out of the path integral gives

1mw
K =C(T)exp [%Sm(wT)[(x?v + 22) cos(wT) — ZxOxN}] (119)
Tmw N
—_— 2yl ) = 2YnYn_1]|- 12
X / /dyl dyn exp [thin(wT) ;[COS(wT)(yn + Yn—1) = 2Yn¥n 1}] (120)
Let us define
mw N 9 9
F(T)=C(T) [ ... | dyy...dyn exp W [cos(wT) (Y 4+ Yiio1) — 2YnYn—1] |- (121)
n=1
Then our propagator simply becomes
_ imw 9 9 B

K = F(T) exp [2hsin(wT) [(x% + z§) cos(wT) 2x0xN}] . (122)

We know that C(T) is a function of only T from exercise 2.4.1, and since all the integrals in F'(T') are evaluated over all
other variables y;...yn—1 (yo = yny = 0), F(T) is a function of T alone (m and w are constants).

5.3 Exercise

vl T) = [ &' Ke T3’ 000", 0) (123)
Inserting
Y(x,0) = exp [—%(m - a)z} (124)
K(z,T;2',0) = F(T) exp [%;TZ;:JH [(2? + 2'%) cos(wT) — 21‘95’]] (125)
gives _
P(z,T) = F(T) / dz' exp {QFL;TZ;:JT)[(JJQ + 2'%) cos(wT) — 2z2'] — %(m’ - a)z} (126)

14



Let us define )
imw mw

k= ———,l = —. 127
2hsin(wT)’ 2h (127)
Grouping like terms and bringing constants out of the integral gives
¥(z,T) = F(T)eke" cos(wT)~la® /dx’ exp|[(k cos(wT) — )2 + (2la — 2kz)x']. (128)
This Gaussian can be done by defining
b =2l — 2kcos(wT), J = 2la — 2kx, (129)
which gives
2w 1/2 12a? + k%22 — 2lakz
F(T) | s ka? T) - la® 130
(T) (2l -2k cos(wT)) exp[ @ cos(wT) —la” + I — kcos(wT) } (130)
Inserting the equations for I, k, and F(T) reduces the first part of this equation to
2 1/2 1 1/2 —iwT
FI)| —————— = = 131
(T) <2l -2k cos(wT)) (cos(wT) +i sin(wT)) exp{ 2 ] (131)

by Euler’s formula. After inserting the factors of [ and k into the fraction and recognizing cos(wT) + isin(wT) = ™7, we

get that the exponent is

2hisin(wT) _or
‘e

xr“ cos(w —ta” + a4+ K7z — 2lakx).
ka? T) - la? %a® + k?2% — 2lak 132

mw
Inserting the equations for [ and k and simplifying gives the exponent as (note that when expanding the coefficient of 22, the
addition with cos(wT) + isin(wT') = e™T cancelled precisely):

mw

—ﬁ[aﬂ — 2aze” T + a2 cos(wT)e 1] (133)

Combining with our previous result gives the total wavefunction (up to normalization) as

T . 4
Y(x,T) = Cexp { - % - %[ﬁ — 2axe” T 4 ¢? cos(wT)e_“"T]}. (134)
The probability distribution is given by
[Y)? = v* = |C|? exp { - % - %[xz — 2aze” T 2 cos(wT)e_“"T]} (135)
Wl mw, wT | 2 iwT
X exp y —— = ﬁ[a: — 2aze™ + a” cos(wT)e™" ] (136)
2 MW, 2 —iwT | iwT 2 —iwT | iwT
=|C| exp{ - ﬁ[Zx —2ax(e + e ) +a” cos(wT)(e +e )]} (137)
Using e~ 7T 4 T = 2 cos(wT), this becomes
2 mw., 2 2.2
|C| exp{ - Th[Qm — 4ax cos(wT') + 2a~ cos (wT)]} (138)

For this to be a properly normalized probability distribution, we must have

/OO dz|y(z))? = 1. (139)

Doing this Gaussian with
2
b= %, J = bacos(wT) (140)
yields
2 2 o2 2 o2 h 2 o [ Th 2
c - T)/h T)/h| | — =|CI*| — =1 141
|C? exp[—mwa? cos® (wT') /h + mwa® cos*(wT) /A (mw) |C] <mw) ) (141)

15



or (up to a phase)

mw 1/4
c= (=) 142
— (142)
Inserting this normalization into our expression for the wavefunction yields
1/4 T .
Y(x,T) = <%> exp _ y[x — 2aze” T + a? cos(wT)e 7] 3. (143)
wh 2 2h
and the probability distribution becomes
9 mw /2 mw
|v|* = ( h) exp{ — §[2x — daz cos(wT) + 2a” cos?(wT)] p. (144)
5.4 Exercise (New 5.4)
In this case the action for each segment becomes
mw
= QST(LUT)[COS(WT)(QCZ,I +a2) =22, 17p (145)
2 _ tn 2 tn
Zn-1 / sin(w(ty — ) f(t)dt + ﬁ/ sin(w(t — tn_1))f(1)dt
mw Jy

mzwz / / sin(w(t, —t))sin(w(t — tn—1))f(t) f(t")dt'dt].
As always, we will switch to coordinates

y(t) = x(t) — z(b). (146)

In this case,
T =xp+ T, (147)

Furthermore we know the Lagrangian for this system is

1 1
L= 5ms‘c"’ — imwsz + f(t)z. (148)
In the new coordinates, this is simply
1 .5 1 5.5 _ - - Lo 1 59
L= (§mx - 5Mw'T + f(0)Z) + (mZy — mwTy) + (imy - 5mwy + f(t)y). (149)
Integrating, the second term becomes,
/dt(mfzcy — mwTy) = mxy|Z$N) - m/dty(% + w?T) = —/dtyf(t) (150)

where the last equality is determined by the equations of motions for . The precisely cancels the last term in the Lagrangian,
and the action for y simply becomes that of the unforced harmonic oscillator:

Ser + Sy (151)

where S, defined by (110) is evaluated over y instead of . Now the propagator for this system is

/D | exp [ Z Sp| = C(T)exp {;Scl} /D[y(t)] exp l;(z Sn) (152)
If we define N
T) /D[y(t)] exp l;(z Sn) (153)
then, ‘
K =F(T) exp[;Scz]- (154)

16



As before, we know that C(T) is just a function of T' and the path integral integrates over all free variables in the action
except T', thus leaving the final F(T') as a function of T" alone. To determine F(T'), we remember that

lim K(xn,tN;To,t0) = d(xn — o). (155)
T-0
Integrating over dxy gives
. 1
%gnoF(T) / dx N exp [hsd} =1 (156)

Looking at the terms in the classical action, we see that as T' — 0, or ty — tg, all the integrals become significantly smaller
than the other terms. Furthermore, the cosine term approaches 1. Thus we can approximate the action as

mw

Sy — 12 42 9 157
LY o sin(wT) o + @5 = 22N 0] (157)

in the small T" limit. Doing the Gaussian integration with

mw mwo

= T hanloT Y T 1
“ hsin(wT)’J sin(wT’) (158)
gives
o 1/2
(2mhsm(wT)> F(T) =1, (159)
mw
or

F(T) = (%)m. (160)

2mih sin

Inserting this into (154) finally yields the desired propagator for the forced harmonic oscillator:

1/2
mw 1
K= (mnw)> eXp{hSd} (161)

5.5 Exercise (Old 5.4)
If f(t) = f, the integrals in the action become

N 1- T
£ sin(ltn — 1)t = =0T (162)
to w
I 1 — cos(wT
f / sin(w(t — to))dt = fA—co@T) (163)
to w
tn gt . B
2 / / sin(w(ty — 1) sin(w(t’ — to))dt'dr = 2(—TmeT) ; QQCOS(WT) 2 (164)
to to W
Then
o mw 9 o 2f —2f cos(wT) 212 wTsin(wT) + 2 cos(wT) — 2
S = 2sin(wT) [cos(wT') (@ +p) — 2wnao + w2 [0 +zN] + 2w 2002 ] (165)
By (161), the propagator is
mw 1/2 mw
K=——— ——{A+B 1
(2m'h sin(wT)) P {% sin@r) AT B (166)
where
2f -2 T
A = cos(wT) (x3 + 23) — 2xNnT0 + %ﬁs(w)[m + zn] (167)
B 2f? wTsin(wT) + 2 cos(wT) — 2 (168)

m2w? 2w?
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6 Partition Function

6.1 Exercise

We can think of W as such: we have N particles and we must place n; particles in the ¢th box in any order. Here, W will

represent the different number of ways one can do that. Hence, W is given as

N!
n1!n2! . nl'

Therefore,

N!

InW=Inh——

=InN!-— Z Inn;!
i=1<N
Stirling’s formula allows us to approximate factorials as
Inn!~nlnn—n
This means
W =NInN-N =" (nilnn; —n,)
Since > n; = N, this means that N and N cancel out and we are left with

InW=NInN — Z(”z Inn;).

6.2 Exercise

We seek to maximize a function f(ni,ns,...,n;) with the constraints of

> NiE;=E

of
(’)mio

To do this, we use lagrange multipliers, where we add these constraints to our equation. Hence,

f(ni,...,nya,pB) :an—l—aZni—ﬁZniEi

- an —thlni +Olzni —527%]31'

Using our third constraint, we find that
of
871,'

=—Inn; +a— BE; =0.

Therefore, we can find that
n; = exp(a — BE;)

This equation can be summed over ¢ to show that

N
N =¢e“ E e PEi — o =1n (Z —5E
- e PE

Hence, this implies that
i N exp(—SE;)
DY j exp(—BE;)
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6.3 Exercise

The average energy can be written as
_ Y Bie

E = 721 =72 (184)
The denominator is just the partition function whilst the numerator is
dz
—— =) Eie PE, 185
Y (155)
The average energy is then just
_ 107 olnZz
D —— 186
Z 0B 0B (186)
6.4 Exercise
The variance is the mean squared deviation. Or in other words,
(AE)=E2-F (187)
We can calculate each part. For the first one, note that
__ E? —BE;
77 = 2l (- AE) (188)
>_iexp(—BE;)
From the given equation in the assignment, this implies that
— 10%Z
E2=—-— 189
We also know that )
—2 1 (07
E = 72 <86> (190)
Combining together gives
2 1827 1 [(97\°
AE ) ==—— — = | — 191
B8 =35 -7 (52) (191)
o (102 1 (0z\* 1 [0z\"
==\l )t 5|53 (192)
0B \Z 9p Z2 \ 08 Z2 \ 08
0*InZz
== 193
o (19)
6.5 Exercise
The change in energy by a quasi-static change in parameter of + — x + dz is
oF
0F = —dx. 194
5 0% (194)
Hence, the macroscopic change in work is simply
. 78Ei 0 - Ei
sw = 2i(ZOF/02) XD(ZHE) 5 (195)
Zi exp(—pE;)
The numerator is simply —0Z/5(0z) and the denominator is just the partition function. Hence,
1 07 10lnZ
W =——0x=-——>Fz. 196
BZ Ox o B Oz * (196)
6.6 Exercise
If we generalize x to V, then we can use the fact that work done is dW = pdV and since
10InZ
dW = — dv, 197
ST (197)
it is apparent that
_ 1 olnZz (198)
P=7Z av
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6.7 Exercise (Old)

Generally, we know that for a regular ideal gas, the equation of state is the ideal gas law pV = nRT. With this equation,
we can relate all intrinsic variables pressure, volume, and temperature together. The above equation can be related to the
equation of state because we contain variables of 3, V, and p (meaning that 8 depends on temperature T'). This means that
if we know either pressure or volume, we can find temperature and vice versa with just the partition function. Most likely,
8 has units of 1/Energy as the coefficients of exponentials in the partition coefficient (e = Y~ e ##¢) must be dimensionless.
Furthermore, as deduced before, it also must depend on T, so the best value for 3 should be 1/kpT, or the thermodynamic
beta as it is called.

6.8 Exercise

Since Z is a function of 8 and z, we can write by the multivariable chain rule that under a quasi-static change in which
parameters z and § change slowly, the change in partition function follows:

olnZ olnZ

dlnZ = o dz + a8 dg. (199)
Substituting equations for work and average energy means
dInZ = pdW — Edp (200)
Note that dE 4+ dW = dQ. So, we can rewrite the above equation as
d(InZ + EB) = B(dW +dE) = pdQ (201)
We know that entropy is given as 40
s = =+ (202)
Hence, this now implies that
BTdS =d(InZ + EB) (203)
S— ﬁiT(ln Z + Ep) (204)

6.9 Exercise

Suppose that two systems have energy states F; and E;. As the two systems are interacting weakly, the total energy is
E, = E; + E; as nothing is dissipated. So then look at the total partition function.

Z = exp(~BE) (205)
,J
= exp(—B(E; + Ej)) (206)
,J
= exp(—pE;) exp(—BE;) (207)
,J
= <Z exp(—ﬁ&)) > exp(—BE;) (208)
i J
=717 (209)
So the total partition function will be multiplied to each other
Zy = 717 (210)
By logarithm rules, the natural logarithm is then expressed as
InZ=InZ; +1n2, (211)
Therefore, the total average energy follows
— dln Z; d(InZy + In Z5) OlnZ; 0lnZ, [
E,=- =— =— =F +FE 212
t 93 93 93 + 95 1+ Lo (212)
which is additive. Similarly, the total entropy follows
1 — 1 — 1 —
Sy = 57(111 Zi+ EB) = 67(111 Z1+ E1pB) + BiT(hl Zy + Eaf) = 51+ 52 (213)

which is additive as well.
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7 Path Integral Calculation of Partition Function

7.1 Exercise

We connect back to equation 46 in the packet where we know that

. z(t)=z1 . t
Uy, t;zo,to) = (w1]e TE0)/ R 0) = / Dz exp {Z/ dtﬁ] .
z(to)=z h to

Taking t — tg = —ifh and x = z1 = xg gives
U(z,—iph;x,0) = (z|e” 5H|x>

We also know that ) |n)(n| = 1, meaning

Uz, —iBhs;2,0) = wleﬁHIZIJ (jlz)
—Ze (@lj) (i)
—Ze (jlz)(z]5)

Integrating over x gives us

/de x, —ifh;x,0) Ze_ﬁH j|/da:|x (x|} Z<]|€ A5 = Z
since [ dz|z)(z| = 1.

7.2 Exercise
From our propagator from exercise 5.4, we know that a quantum harmonic oscillator has a propagator of
1mw

K =F(T)exp [%sm(wT)

[(3 + 22) cos(wT) — 2xomN}] .
Substituting t — —iph, we get

Z = /de(x, —iBh;x,0)

- /dx (2mhsm (iBhw)

: ) 0 { i o cos( i) — 7]
<2mhsm (@Bhw) ) / d {hSIHh?;ﬁw) (cosh{he) = 1]}

hi sin(—iBhw)

<2mhsm zﬁhw s (57) cosh(Bhw) - 1])

(cosh(ﬂhw) —1)1/2
e—ﬂhw/2

1— e—ﬁhw :

7.3 Exercise

From section 4.3, we know that

.'I)(t):l‘l 7, t
U(ml,t;xmto):/ Dx exp {/ dtﬁ]
z(to)=z0 h to

Furthermore, we know from section 1, that the classical action is defined as

123
S:/ L(z, &, t)dt
ta
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So by substituting the equation into our previous equation, it is easy to show our propagator now becomes

Uy, —ir ) = / Drexp [—;SE[:C(T)]]

The action in this case can be shown under differentiation rules:

fo _ir o d&_dwdr  dz
-7 a  drdt | dr

Hence, the Euclidean action goes as

[t (Gt - Vi) » ~i [ a (Fatr) + Vi)
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8 Green’s Functions in Quantum Mechanics

8.1 Exercise

Using completeness, we can write the equation in the packet as

////dxldxgdx3dx4 (@) e tH(T—t2) |z1) (@1| T |23) (3] et (t2—t1) |z2) (@2 T |x4) (4] et (LAT) |zq) - (232)
By the properties of position eigenkets and the orthonormality of basis kets,
<.131‘.f|$]> :xlé(xl —Jij), (233)
we get

////dx1d$2d$3dl'4$11'26($1 —x3)0(x2 — z4) (Tp] e H(T—t2) |x1) (zs] et (ta—t1) |z2) (4] e~ (L) |zq) - (234)

Using
N Ty tp
(p| e (to—ta) | ) = / D[:E(t)]exp{i / dw} (235)
Tq ta

and the properties of the Dirac delta function, we get
T ta 11 T
/D[x(t)]xlxg exp{i[/ dtc +/ dtc +/ dt/j]} - /D[x(t)]x1:c2 exp{i/ z} (236)
to t1 -T -T

£ e s T
<xb‘ e_iH(T_tQ)i‘e_ZH(tQ_tl).fte_lH(t1+T) |xa> = /D[m(t)]xlgjz exp{j/ [:dt} (237)
_T

and thus

Note how we can only add the integrals in (236) if t; < 2, as otherwise, the sign of the integral will flip, thus misaligning
the bounds of integration. Since the equation (237) can only hold with this time ordering, and since this time ordering is
provided by the bounds of integration given by

exp{—iH(t2 - tl)}, (238)

we can associate this term with time ordering;:
Texp{—iH (to — t1)}& <= T{Z1d2}. (239)
This is made more obvious when expanding the Heisenberg kets
B(t;) = & = eMige M, (240)

Since time ordering automatically assures the condition t; < t5 when

T{&(t1)2(t2)} = 2(t2)2(t1), (241)
we have
e*iH(T*tQ)ieiH(t27t1)i‘,efiH(t1+T) (242)
— e—iHTethQ a/,\:e—thQ ethl i,e—thle—iHT (243)
= e HT g (ty)2(ty )e T (244)
= e HTT{3(t))2(ty) e T (245)
and thus

(ol e T L (0 )i (t2) b T [za) = / D[x(t)]xlxgexp{i / Ldt}. (246)

-T
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8.2 Exercise
/ Dlz(t)|z1z0€" JZIzdtL _ (x| e HTT{2(t1)2(t2) Ye  HT |2,) . (247)
We also know that

/D[x(t)]ei Jor At = (| €720 |55, (248)

from (235). We can insert completeness of energy eigenstates (3, |E1) (E;| = 1) into e 77T |z,), giving

> (BEilra) e T IE) = > (Eilra) e T |Ey) . (249)

A A

In the limit T" — oo(1 — i€), this sum is dominated by the smallest factor in the exponent, just as with the classical limit
of the path integral. This minimum of the exponent is given by the ground state with energy Ey. Then, we have (letting
o) = |)) | | o

ol e ) = Z (Eilza) e BT | Ey) = (Qzq)e” =i |0). (250)

Inserting this (and its conjugate transpose) into our previous expressions, we get

. lir(rll , )<o:b| e HTT{&(t1)a(t2) e T |za) = (| (Qza)e 2 F0x =0 (QI T{2(t1)2(t2) } Q) (251)
— 00 —1€
and ‘ A ‘
lim (@] e 2T |2,) = (2| Q) (Qag ) e 2 Foxc (1710 () | (252)
T—o00(1—1i€)
If the vacuum state is normalized
Q) =1, (253)
then (| e T (1) (02) e~ T |a)
. Tyl e T z(t)z(ta) be ™ Tq R R
] : —(Q|T Q 254
T i) (o e 20T ) QI T{2(t1)2(t2)} |2) (254)
and consequently
Dla(t i [T, dtL
hm L PlE@zize = (Q T{a(t1)i(t2)} Q) = Glt1, t2). (255)

Tooo(l=i) [ Dlx(t)]e! [y dtr

8.3 Exercise
[ Dla(t))e S+ de@a(t)
J Dlx(t)]ets

The denominator is independent of J, so we can consider only the numerator while differentiating, which we denote as W[.J].
Bringing the functional derivative through the integral, we have

1 5 1 5
10 winot _ 0 i(s+[ dI(t)a(n)
576"V i/D[x(t)](SJ(tl)e . (257)

Z[J] =

(256)

Using the properties of the functional derivative given in the handout and the chain rule, this becomes

1 ; . dtJ(t .
- /D[x(t)]e (S+ [ dtJ(t)z(t)) I(SJ & /D (S+f dtJ(t) (t))x(tl). (258)

Since this factor of x(¢1) is independent of J, continued differentiation yields

1 5 1
z 1(S+f dtJ(t)z(t))
i0J(t) i 5J /D z(t1)...a(tn). (259)

Setting J = 0 eliminates the J term from the exponent and gives

1§J‘(5t1) . 5J( lly=o = /D (t1).2(b). (260)

Reinserting the denominator and using the correlation function’s relation to the path integral from the packet, this becomes

xr eiSCL‘ AN 2% ~ N N
15J((St1)"'15thn)Z[‘]”J‘° _ /7 (ft)]pwgﬁ?s Un) Q| P (t)i(ta) (1)} ) (261)
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8.4 Exercise
Under this shift, the Lagrangian becomes

1 2
Lh = =i + i + O(&) — 222 — Wre + O(2) = Lo + i — w?e.
079 2

The action is thus

T
S = So+ / dt(ié — wze).
-7

Expanding the exponential to first order yields

T
/D[x(t /D Jet%o[1 Jrz/ dt(ié — w?xe)].
—T
T T T
/ dti:é:i:eET—/ dt:’c’e:—/ dtie
-T -T -T

where the first term vanishes due to the boundary conditions of €. Inserting this into the expansion gives

/ Dla(t)]e / Dle()]eSo[1 + i [ i dt(—ive — w?ze)] = / Dle(t)]eiS[1 — i [ TT dte(9? + w?)a).

Now expanding the total function in (87) in the packet gives

T
Dlz(t)]z1e™ = [ Dlx(t)](z1 + e1)e™°[1 —i dte(0? 4+ w?)x].
-7

Integrating by parts,

Expanding and keeping terms only first order in € gives

/D[:c(t)]xleis" = /D 1))z, et +/D )] erets i/D[x(t)}eiSO /T dte(9? + w?)wwy.

-T

Since €; = €(t1) = fTT €(t)d(t — t1), we have

/D[ erel fz/D 150/ dte(9? + )z, = i/D[m(t)]eiSO /T dte(t) (0 + w?)aas +i6(t—t1)).

-7
For the equality in (268) to hold, this term must equal 0:
' T
/D[z(t)]elso / dte(t)((0F + w?)wxy +i6(t —t1)) = 0.
-T

Now bringing the path integral past the time integral gives

/ dte(t /D "0 (02 + w? )xx1+15(t—t1))—0—>/1) 150 ((0F + w?) ) + i6(t — 1))
since €(t) is an arbitrary function. Again, bringing the path integral past the operator 97 + w? gives
_ . Dlx(t)]eoxx .
(02 +w?) / Dle(t)]eSzay = —id(t — 1) / Dla(t))ei - (37 + »’M s t).

Due to (83) in the packet, we know this is just the Green’s function for 2 and z1, and so we have the relation

(07 +w?) (O] T{&(1)2:1 (1)} |0) = —id(t — t1).
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8.5 Exercise

Inserting the expression for z’ into the equation, we get

/ dt% [x(—aQ — Wi / QWG T(E) (0% — w?)z — i / At T ()20 — WG (L, 1) (274)

+ / dt% [— / Gt T (~0? — w? / A Gt )] ] / dtdt' TGt )T (8. (275)

Due to (273), we have
(—0* —WAG(t,t") = id(t —t). (276)

Inserting this into the second to last term gives
—% / dt / Gt T ()5 (E— )T () = —% / dtdt' ()G () I () (277)
which precisely cancels the last term in (274). The first term in (274) can be evaluated using integration by parts, giving
%/dt(—xjﬁ—w%z) = % [:c:'cET +/dt(a's) w%?} : (278)

Assuming the z vanishes at the boundary conditions (Note: in the limit of the Green’s function, this means that = vanishes
at +oo(1 — i€)), this is simply

/ dtLofa] (279)

with £y being the harmonic oscillator Lagrangian. The second term in (274) can also be evaluated using integration by parts:
/dtdt G(t, t")J (') (0% + w?) U dtdt'G(t,t")J ()| p — /dtdt’@tG(t,t’)J(t’)j: + /dtdt’G(t,t’)J(t’)wa} (280)
[/ dtdt' G(t,t")J(t)&|L /dtdt G(t,t)J ()| + /dtdt 0FG(t, 1) /dtdt G(t,t) )w%} (281)

= /dtdt’J(t')x(@f +w?)G(t, 1) = %/dtdt'J(t’):cé(t’ —t) = %/dtjx (282)

where it was assumed that & also vanished at the boundary conditions. Finally, the third term in (274) can be evaluated as

—%/dtdt’.](t')a:(—ﬁz — WGt = %/dtdﬂj(t’)xé(t—t’) = %/dtJ:c. (283)
Combining everything, we have
) :
/dt§[a;’(—82 — w2’ + %/dtdt’J(t)G(t,t’)J(t’) = /dt(ﬁo[x] + Jz). (284)

Using the definition of Z[J], we get

T ez(f dt(Lo+Jx) fdtz'(7827w2)z'
Z[J] = J Df[ D(Fi](t)]eif”m :exp|:—; / dtdt' J(H)G(t,t')J(t) ]f Dz fD ST , (285)

The exponent of this expression can be integrated by parts to give
1 / 2 2\ ./ 1 /0T 2 /2
dti[x (=0 —w?)a'] = g% e |2 + dt dtLo[x (286)

where it was assumed z’ vanished at the boundary conditions as well (meaning the Green’s function approaches 0 as ¢t —
+oo(1 —i€)). Because 2’ = x + €(t), we know a change of variable will not alter the functional integration. Thus,

/D[x(t)]eéj dtz’ (=% —w?)z’ _ /D[x'(t)}ezj dtLolz'] _ /D[Jf(t)]el j'dtﬁo[m]. (287)

Inserting this into (285) gives

Z1J] = exp [—; / dtdt' (G, t’)J(t’)} . (288)
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8.6 Exercise

Since we know

2] = exp {—; / dtdt’J(t)G(t,t’)J(t’)}, (289)
we can take functional derivatives of this to obtain the n-point functions. The first functional derivative is
5 J((stl)Z[J] = ¢~z J A" TGt (1) 5 J‘(stl) <; / dtdt’J(t)G(t,t’)J(t’)> (290)
= —%Z[J] (/dt’G(tl,t’)J(t’) +/dtJ(t)G(t,t1)) : (291)
Relabeling ¢’ — ¢ and noting that G(¢,¢1) = G(¢1,t) due to time ordering, this is
(5J((St1)Z[J] = —%Z[J] (2/dtG(t1,t)J(t)) = —Z[J]/dtG(tl,t)J(t). (292)

Setting J = 0 makes this expression 0, so the 1-point correlation function vanishes. Continuing, the second functional
derivative will be

(SJ‘(Sm (—Z[J] / dtG(tl,t)J(t)> _ / dtG(tl,t)J(t)MftQ)Z[J] - Z[J}(Sjgm / G (1, 1) (1), (293)

The first term is given by (292) with ¢; — ¢2, and the second is
_Z1G(t1, 1), (204)

When J — 0, the first term vanishes again, and Z[J]=1, leaving
2 ]lsmo = ~Glt1,ta). (205)

57(62) 57(t)
The third functional derivative will be

- me - J((Stz) - thB)Z[J] - (Jm {Z[J] / G, 1) (1) / UG (1, )T (1) — ZLIIG (b, )| - (296)

The last term will clearly be 0 when J(t) = 0 due to (292). The first term is 0 because when expanding using the product
rule, at least one of the integrals will have a factor of J(t), and setting this to 0 will kill this first term. We have thus spotted
a pattern in these derivatives: whenever we have an odd number of derivatives, factors of J are multiplied by all terms in
the expansions, and setting it to O kills all the terms. When there is an even number of derivatives, these factors of J are
differentiated due to the product rule, thereby leaving factors of Green’s functions and removing factors of J from coefficients
of the terms.

8.7 Exercise

Expanding (296) gives

: J‘(Stl) ; J?h) - J((StS)Z[J] — 7] / G, 1) (1) / G b, 1) (1) / G (t, 1) (1) (207)
+ 2T G b, 1) / Gt 0)J (1) + Z[T)Gts, t3) / G, 1) () + 2] / QG (1, )T ()G (11, 1), (298)

Differentiating again with respect to J(t4) gives

] ] ] 4]

5700 57(ta) 57t 37ty 21 = (209)

— Z[J}/dtG(tl,t)J(t)/dtG(tz,t)J(t)/dtG(tg,t)J(t)/dtG(t“)J(t) (300)
_Z[J]/dtG(t4,t)J(t)G(t17t3)/dtG(tz,t)J(t)+Z[J]G(t17t3)G(t2’t4) (301)

—Z[J] / dtG(ta,1)J (t)G(t2,t3) / dtG(t1,t)J(t) + Z[J]G(t2, t3)G(t1,ts) (302)

—Z[J] / dtG(ts, 1) J ()G (t1, t2) / dtG(ts, t)J (t) + Z[J]G(t1, t2)G(ts, ta). (303)
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Now J =0 and Z[J] =1, so
5 § 5 )
0J(t1) 8 (t2) 8 (t3) 8J (t4)
= (QT{Z1Z22384} Q) = G12G34 + G13G24 + G14G23 (305)

Z[J]| =0 = i* (Q T{#1&28334} |2) (304)

where Gij = G(ti,tj).

8.8 Exercise

We know that

Gltnt) = I —  Dames (306)
Furthermore, from section 5.4, we know (T'=1t, —t, = T — (—T) = 2T).
iS _ p o mw 2 iSel
/D[x(t)}e K= (mm> iSer, (307)

The numerator can be written as
/dﬂjldﬂnglIg/D[I(t)]eiS. (308)

We know when z, = 2, = 0,

1 ot . . / ’ /
5a = T /_ ) /T sin(w(T + 1)) sin(w(t' — T))F(t') f(£)dt'dt. (309)

In order to calculate the numerator, we can replace S with the discrete approximation S,, given in (145). The numerator

then becomes
/dxldxgxlxg/D[sc(t)] exp

We can now do the same coordinate transform to y; as in exercise 5.4, and the result is

N
/dxld;vgmlxg/D[x(t exp[ ZS ] T) exp|iSa] /D 1(Z1 4+ y1)(Z2 + y2) exp [zZSn] (311)

n=1

N
iSlJrngJrz‘SngiZSn

n=4

(310)

where S,, is defined by (110) with y instead of = as a variable and with T — 27. Remembering that one point Green’s
functions vanish, and hence that the cross terms with single factors of y; vanish, the integral becomes

exp|iSe] <m1ng(T) /D[y(t)] exp [2 Z S| +C(T) /D[y(t)]y1y2 exp [2 Z Snl ) . (312)

n=1
Using the definition of F(T') given in (153) and cancelling the factor coming from the denominator of the Green’s function,
we get (omitting the limit)

expliSe] (mlng C(T) [ Dly(t)]y1y2 exp [z 22[21 SnD o I Dly(®)]y1y2 exp[ 25:1 Sn}
= X122 + .

Gt1,t2) = F(T) eXp[ZScz} fD[y(t)] exp [Z Yo Sn}

(313)

The advantage now is that the action is that of the unforced harmonic oscillator. The sum in the exponential can be written
as

N N .
' 2T (52 + 42 1) — 2Yntn_ y
an::l z:: 251n 2wT [cos(2wT') (yp, + Y1) YnYn—1] (314)
2k cos(2wT) —2k 0o 0 .. Y1
= v - yn-1) 0 2kcos(2wT) —2k 0 .. Y2 | (315)
YN-1
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where )
imw
= 1
F 2sin(2wT) (316)

In Zee QFT, the formula
oo [y drye™ 25 AT g
(wiz;) = J o[ dor..dzve A (317)
f...fdxl...d:z:Ne 2T A

is derived by differentiating the generalization of (60). Letting

—4k cos(2wT) 4k 0 0 ..
A= 0 —4kcos(2wT) 4k 0 .. (318)
and
a = —4k cos(2wT), b = 4k, (319)
we get
b
-1 _
A = . (320)
This was obtained by entering matrices of the form
-1 -1 2 2/.3 (B3 /a4
a b 0 -1 a1 7(b/a2) b2/a3 a b 00 a (blflz) b/a2 (2 /g)
Y 2 0 a b O 0 a —(b/a*)  b/a
0 a b =10 a —(b/a*) |, = i 9 (321)
0 0 0 0 2 0 0 a b 0 0 a —(b/a?)
“ “ 000 a 0 0 0 a!
using Wolfram Alpha. Thus we finally get that
Gltts) =  lim (217 ik, (322)
= im _ ),
D0 (i) . (4k cos(2wT))?
Simplifying the last term gives
1 p sin(2wT'
B _ isin(2wT) . (323)
4k cos?(2wT)  2wmcos?(2wT)
When z, = a2 = 0, we have by (108) and (109) that
= ]' SIH(W(T + t)) /T : / ! !/ ]' /t . ! ! /
t)=————F—"F"7 T—t tdt — t—t thdt'. 24
#(0) = o S st =)@+ o [ sinult — )5 ) (324)
In order for 1
G(t1,t2) = Ee—iwlt‘z—tll (325)
to hold, we must have
—emwltemhl — iy T1Zy — Ak cos(wlty — t1]) — isin(w|ta — t1]) (326)
2w T—o00(1—ie) (4k cos(2wT))?
or
: 1 Sin(w(T+t1)) /T : / AP 1 /t1 . / A
1 —_— T—t tdt — t1 — 1t thdt 2
L Jm ( o [ s =)+ [ st =) () (327)
1 Sin(w(T+t2)) /T . / AP 1 /t2 . / A
-_— T—t tdt — to — 1 th)dt 2
< o [ (T =)+ [ st =) () (329)
. 1 . isin(2wT)
= 1 — to — 1)) — to —t1|) = —————= | - 329
T%olr(lg—ie) 2w [COS(M 2~ taf) —isin(wlts — ) mcosQ(ZwT)] (329)

We weren’t sure how these expressions would reduce, especially with the factors of ~ [ fdt, but our best guess was that the
limit somehow killed these terms and reduced the expression to equality.
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9 Feynman Diagrams

9.1 Exercise

The first Feynman diagram evaluates to
T
—i)\/ dtG(t,t)G(t1,t)G(ta, t).
-T

The first diagram in the disconnected set is
T T
(—i)\)2/ / dt'dtG(t1,t)G(ta, t)G(t, t")G(t, )Gt t3)G(t, ta),
-TJ-T

and the second is -
—i)\/ dt"G(t" "G, t").
-7

The total disconnected diagram is thus

T T T
(—z’)\)?’/ / / dt"dt' dtG(t" " YGt", t")G(t1,t)G(t2, ) G(t, ) G(t, " )G(t'  t3) G, ta).
-T7J-TJ-T

9.2 Exercise

The diagrams for

; T
O T i ()it (<5 ) [ asio)o)

(330)

(331)

(332)

(333)

(334)

are given by all combinations of vertices with 4 external vertices and one internal vertex. These are given by the following:

t t;
tl t3 t 1
t2 t4 t2 t4 tZ
t) t3 t
t; t, :
t2 ‘E; t3 t4 1:4
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t ty ty ts ty t,
t t3
t
t, t,

The integrals for the diagrams are given by
Dy = fi)\/dtG(tl,tg)G(tg,t4)G(t,t)G(t,t)
D, = —z')\/dtG(tl,t3)G(t2,t4)G(t,t)G(t,t)
Dy = —i / UG (1, 1) b, 13)G(E 1) G(E )
Dy = —i / G (1, )G b, DG )Gk, 1)
Dy = —ix / QG by, 1)C(ts, )G (L DG b, 1)
Dg = —i/\/dtG(tl,t)G(t4,t)G(t,t)G(t2,t3)
D7 = fi/\/dtG(tg,t)G(tg,t)G(t,t)G(tl,t4)
Dg = —i)\/dtG(tg,t)G(t4,t)G(t7t)G(t1,t3)
Dy = —i/\/dtG(tg,t)G(t4,t)G(t7t)G(thtg)
Dy = —i)\/dtG(tl,t)G(tQ,t)G(t,tg)G(t,u).

Thus, the total contribution of this term will be

A

T
4,) / dtf%(t)} |0> = 81(D1 + Dy + Dg) =+ 82(D4 + ...+ Dg) + s3D10
)T

O T{Z1(t1)21(t2)21(t3)21(ta) (—

(335)
(336)
(337)
(338)
(339)
(340)
(341)
(342)
(343)

(344)

(345)

where the s; are the symmetry factors for each diagram. From the packet, we know s, = % = %. The diagrams 4...9 all have

1 loop, so so = % = 1—12 The 10th diagram has no loops, so s3 is simply i = 2—14.
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9.3 Exercise

Inserting the factors from 9.2, we get

(O T (011 (t2)@ 1 (t) 1 (£4)}0) + (O] T{@ 1 (1)1 (b2)1 (ta) &1 (ta) (= 3) J 17 dtf ()} [0)

i (346)
1— 2 [dtG(t,t)G(t,t)
_ G12G34 + G13Gas + G14Gas + 51(D1 + Do + D3) + 55(Da + ... + Dg) + s3D1o (347)
1— 2 [dtG(t,t)G(t,1) '
Using the expansion
1
—— =14 +a?. (348)

1—2x

and keeping terms first order in A, we get (letting s; = % and plugging in the expressions for Dy, Dy, and Ds3):

»)
(G12G34 4+ G13G24 + G14Go3 + 81(D1 + Doy + Dg) + 82(D4 + ...+ Dg) + S3D10...)(1 + % / dtG(t, t)G(t, t)) (349)

= G12G34 + G13G21 + G14G23 (350)
A

+ (G12G34 + G13Gas + G14G23)(§ /dtG(t, t)G(t, 1)) (351)
i\

— (G12G34 + G13Gog + G14G23)(% /dtG(t, t)G(t, t)) + 82(D4 —+ ...+ Dg) + 83D10). (352)

Noting that the second and third terms cancel, we are left with

G12G34 + G13Gayg + G14Gaz + s2(Dy + ... + Dg) + 53D10. (353)
9.4 Exercise
The integral for this diagram is
T
fz')\/ dtG(t1,t)G(ta, t)G(t,1). (354)
-T
Using the Green’s function for a harmonic oscillator,
Glta,t1) = L gislta—tl (355)
) 2w )
this is
Toat
_M/ At ittt 4 —t]) (356)
_r (2w)?

Inserting ¢t; = t5 = 0, this simplifies to

T : T
) dt  _ouit] iA / Qwit
— — =—— 2
z)\/ @ )36 (29 ; dte (357)

because the integrand is even in ¢. This integral can be evaluated as

N2 21 it
- wil _q] = 1 — e~ 2T 358
(2w)® —2wi [ ] (2w)* [t =] (358)
In the limit 7" — oo(1 — i€), the second term becomes
lim e—QwiT _ e—Qwiooe—2weoo =0 (359)

T—o00(1—ie)
when € > 0, and since the first term always has magnitude 1. Then the diagram evaluates to

2A A
__A 60
(2w)* 8w (360)
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