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Introduction



Background

• The LRL vector is a conservation law in orbital mechanics.
• It is most related to the eccentricity of the orbit and is given by the
equation

ε⃗ =
L⃗× v⃗

GMm
+ e⃗r = const.

• Here, L⃗ is the angular momentum of the object, v⃗ is the velocity, G is
the universal gravitational constant, e⃗r represents the radial vector,
andM and m are the big and little masses respectively.
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Eccentricity

• Eccentricity is a fundamental parameter used to describe the shape
of an orbit. In the context of celestial mechanics, eccentricity refers
to how elongated or circular an elliptical orbit is. It is a
dimensionless quantity that ranges from 0 to 1, where:
• An eccentricity of 0 represents a perfectly circular orbit.
• An eccentricity between 0 and 1 represents an elliptical orbit, with
• higher values indicating a more elongated shape.
• An eccentricity of 1 represents a parabolic orbit, which is the boundary
between elliptical and hyperbolic orbits.

• An eccentricity greater than 1 represents a hyperbolic orbit, where the
object follows a path that is open and unbounded.
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Eccentricity Continued

• The eccentricity of an orbit can be calculated using various methods,
but one common approach is to use the semi-major axis (a) and
semi-minor axis (b) of the ellipse.

ε =

√
1− b2

a2
.

• Eccentricity has significant implications for the dynamics and
characteristics of celestial bodies in orbit. For example, orbits with
higher eccentricities have more significant variations in distance
between the orbiting object and the central body.
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Derivation



Derivation

• We try to prove that d
dt
(v⃗× L⃗) = GMmde⃗r

dt
where e⃗r is the radial vector.

• d
dt
(v⃗ × L⃗) = dv⃗

dt
× L⃗+ v⃗ × dL⃗

dt

• dv⃗
dt
× L⃗ = a⃗× L⃗ = 1

m

(
F⃗ × L⃗

)
= −GM

r2 e⃗r × L⃗

• v⃗ × dL⃗
dt

= 0
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Derivation cont.

• d
dt
(v⃗ × L⃗) = −GM

r2 e⃗r × L⃗

• p⃗ = mv⃗ = m
∣∣∣d(|r⃗|e⃗r)dt

∣∣∣ = m
(

d|r⃗|
dt
e⃗r + |r⃗|dr⃗

dt

)
• L⃗ = r⃗ × p⃗ = r⃗ ×m

(
d|r⃗|
dt
e⃗r + |r⃗|dr⃗

dt

)
= mr2

(
e⃗r +

de⃗r
dt

)
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Final Steps

• a⃗× (⃗b× c⃗) = b⃗(⃗a · c⃗)− c⃗(⃗a · b⃗)

• d
dt
(v⃗ × L⃗) = −GM

r2 e⃗r × L⃗ = −GMme⃗r ×
(
e⃗r +

de⃗r
dt

)
• d

dt
(v⃗ × L⃗) = −GMme⃗r

(
e⃗r · de⃗r

dt

)
+GMmde⃗r

dt
(e⃗r · e⃗r)

• d
dt
(v⃗ × L⃗) = GMmde⃗r

dt

• C⃗ = v⃗ × L⃗−GMme⃗r.
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Additional Information



General Things

Here are some things I want to talk about:

• The ellipticity vector ε⃗ is a scaled down version of the LRL vector by a
factor of GMm.

• The LRL vector is directed in the same direction (left or right)
throughout an orbit’s path.

• LRL vector is conserved for all types of orbits (ellipse, parabola,
hyperbola, etc).
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Hodograph

• Take cross product of A⃗ with angular momentum L⃗

L⃗× A⃗ = L⃗× (p⃗× L⃗−GMm2e⃗r) = L⃗× (p⃗× L⃗)− L⃗×GMm2e⃗r.

• Double Cross Product Identity:

L⃗× A⃗ = p⃗(L⃗ · L⃗)− L⃗(L⃗ · p⃗)− L⃗×GMm2e⃗r.

• Since L⃗ ⊥ p⃗, then L⃗ · p⃗ = 0:

−lAe⃗y = l2p⃗−GMm2e⃗θ.

•
∣∣p⃗+ A

l
e⃗y
∣∣ = GMm2

l
=⇒ p2x +

(
py − A

l

)2
=

(
GMm2

l

)2
.
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Visualization
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Visualization Cont.
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Problems



2017 APhO Problem 2

Let us study a simplified version of a galaxy. You can ignore the velocities of the
stars in the galaxy. All the stars are of mass m. Consider a super massive
blackhole (SBH) of massM (M ≫ m) moving with a velocity v through the
galaxy. We are working the reference frame of SBH.

Consider the transit of one star with impact parameter b. Assume that
b ≫ b1 = GM/v2. The angular deflection of the star is α = kb1/b, where k is some
coefficient. Find the value of k.
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Creating a ”Phasor” Diagram
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2021 Physics Cup Problem 2 (PoTW)

At two different points in its orbit, a comet has
velocities v⃗1 and v⃗2. If:

• v⃗1 and v⃗2 are orthogonal and;
• |v⃗1| = 2|v⃗2|, what is the smallest possible
eccentricity of the orbit?
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Constructing the Hodograph

The Laplace-Runge-Lenz Vector · Ashmit Dutta 14/21



Constructing the Hodograph
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Constructing the Hodograph
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Constructing the Hodograph
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Constructing the Hodograph
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Final Steps

• WLOG, let the coordinates of the endpoints of each momentum
vector be (p2, 0) and (0, p1).

• We then can find the equation for the line that adjoins all the centers
by generalizing the center to be at a coordinate (x, y).

• Then we can write that√
(p2 − x)2 + y2 =

√
(p1 + y)2 + x2 =⇒ y = −p2

p1
x+

p22 − p21
p1

.
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Final Steps

• y = −p2
p1
x+

p22−p21
p1

• Since |v⃗1| = 2|v⃗2|, this tells us that the line going through all circular
centers represents y = − 1

2x− 3
4p2

• Now that we have found this line, note that the magnitude of the
eccentricity vector is given to be ε = A/GMm2.

• If we look at the geometry of a circular hodograph, it is apparent that
ε = cosφ = y/R where y = A/l or the displacement of the hodograph
from the origin, R is the radius of the hodograph, and φ is the angle
between both scalars. We know that R =

√
y2 + (p2 − x)2.

The Laplace-Runge-Lenz Vector · Ashmit Dutta 20/21



Final Steps

• y = −p2
p1
x+

p22−p21
p1

• Since |v⃗1| = 2|v⃗2|, this tells us that the line going through all circular
centers represents y = − 1

2x− 3
4p2

• Now that we have found this line, note that the magnitude of the
eccentricity vector is given to be ε = A/GMm2.

• If we look at the geometry of a circular hodograph, it is apparent that
ε = cosφ = y/R where y = A/l or the displacement of the hodograph
from the origin, R is the radius of the hodograph, and φ is the angle
between both scalars. We know that R =

√
y2 + (p2 − x)2.

The Laplace-Runge-Lenz Vector · Ashmit Dutta 20/21



Final Steps

• y = −p2
p1
x+

p22−p21
p1

• Since |v⃗1| = 2|v⃗2|, this tells us that the line going through all circular
centers represents y = − 1

2x− 3
4p2

• Now that we have found this line, note that the magnitude of the
eccentricity vector is given to be ε = A/GMm2.

• If we look at the geometry of a circular hodograph, it is apparent that
ε = cosφ = y/R where y = A/l or the displacement of the hodograph
from the origin, R is the radius of the hodograph, and φ is the angle
between both scalars. We know that R =

√
y2 + (p2 − x)2.

The Laplace-Runge-Lenz Vector · Ashmit Dutta 20/21



Final Steps

• y = −p2
p1
x+

p22−p21
p1

• Since |v⃗1| = 2|v⃗2|, this tells us that the line going through all circular
centers represents y = − 1

2x− 3
4p2

• Now that we have found this line, note that the magnitude of the
eccentricity vector is given to be ε = A/GMm2.

• If we look at the geometry of a circular hodograph, it is apparent that
ε = cosφ = y/R where y = A/l or the displacement of the hodograph
from the origin, R is the radius of the hodograph, and φ is the angle
between both scalars. We know that R =

√
y2 + (p2 − x)2.

The Laplace-Runge-Lenz Vector · Ashmit Dutta 20/21



Final Steps

• ε = y
R
.

• Hence,
ε =

−x/2− 3p2/4√
(−x/2− 3p2/4)2 + (p2 − x)2

.

• Since ε > 0, this is the same as minimizing

min
{x}

ε2 = min

[
(−x/2− 3p2/4)2

(−x/2− 3p2/4)2 + (p2 − x)2

]
.

• It is evident that the minimum exists when p2 = 0 thus min ε2 = 1/5.

• This means that ε =
√
1/5 ≈ 0.44.
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