Members: Arjun Aggarwal, Jihong Cai, Ashmit Dutta, Divij Garg, Minghao Shi, Stevie Ridens Team Leader: Advith Govindarajan, Vincent Villalobos — Faculty Mentor: Marius Junge

Question. How well can we simulate open quantum system dynamics on a quantum computer?

Evolution of quantum systems are described in terms of quantum chan positive and trace-preserving maps. One of the motivating idea for quantum computer is to simulate particular dynamics of quantum evolu In this project, we consider a quantum dynamical semigroup and the the channels given by a specified resource set.

Let $(T_t)_{t>0} = (e^{-tL})_{t>0}$ be a one-parameter semigroup acting on n qubi

$$L = \sum_{j=1}^{n} L_{a_j}$$

is a Lindbladian operator consisting of local components given by

$$L_a(\rho) = a^* a\rho + \rho a^* a - 2a\rho a^*$$

and

$$a_j = I \otimes \cdots \otimes I \otimes a \otimes I \otimes \cdots \otimes I$$

have a on the *j*-th component and identity everywhere else. We will consider two concrete examples:

•LCU Model: Let $L = \sum_{j} L_{X_j} + L_{Z_j}$. The channel e^{-tL} is the prorotations. The resource set is given by $\mathcal{U} = \left\{ e^{itX_j} : 0 \le t \le 2\pi \right\} \cup \left\{ e^i \right\}$ • Photon Emission Model: Let $L = \sum L_{a_j}$ where $a = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

Simulation Cost and Resource-Dependent Com

We will identify the useful resource set and the corresponding unitary the help of classical averaging to approximate the channel by

$$\Phi_{\mu}(|\psi\rangle \langle \psi|) = \mathbb{E}_{\mu}U_m \dots U_1 |\psi\rangle \langle \psi| U_1^* \dots U_m^* \text{ where } U_1, \dots$$

Question: For given $\delta > 0$ and a fix t, what is the minimal depth m suc

$$||\Phi_{\mu} - e^{-tL}||_{\diamond} < \delta.$$

We use standard diamond norm as measure of approximation. Then the depth m:

$$l_{\delta}^{\mathcal{U}}(e^{-tL}) = \inf \left\{ m : ||\Phi_{\mu} - e^{-tL}||_{\diamond} < \delta \text{ for some measure} \right\}$$

For small t we are close to identity. So we require better approximations in a uniform way by considering the maximal simulation length for the correlated error rate $\delta = \alpha t^{\beta}$ as

$$M_{\alpha,\beta} = \sup_{t>0} l^{\mathcal{U}}_{\alpha t^{\beta}}(T_t).$$

Simulation and Noise

	Classically-Assisted Dep
cs by unitary gates	We want to find the minimal number of unitaries required the help of some classical resources (averaging) up to the demonstration of the idea in terms of circuits. quantum: $ \psi\rangle - U_1, \dots, U_n$
nnels, or completely the construction of lution in the lab.	classical: $ \omega_1 \dots \omega_m\rangle$
e cost of simulating bits, where	Via this framework, we are able to produce both lower an mal simulation length.
,	LCU Model
	For the LCU model we first find a good gaussian average combine this with a well-known composition trick due to for the combined X, Z Lindbladian that
	$M_{64n,2} \le 2n$ and $M_{1,2} \le 2n$
	and $M_{512n,3} \leq 3n$ and $M_{1,3} \leq 3n$
product of X and Z $e^{itZ_j}: 0 \le t \le 2\pi$	Suzuki proved that for error estimate of degree higher than thus the semigroup framework will not have a bound Lower bounds are much harder to prove. We can steel channels. In the LCU- <i>X</i> , <i>Z</i> model this new maximal conducts. For the LCU model, it is possible to explicitly bound When $\beta = 2$, $\frac{n}{128\pi} \leq M_{1,2} \leq 128n^2$
nplexity	When $\beta = 3$,
set \mathcal{U} in addition to	$\frac{\sqrt{n}}{1024\pi} \le M_{512n,3} \le 3n$
$, U_m \in \mathcal{U}$	Photon Emission Mod
ch that	For the photon emission model, we need to consider dila
	$T_t(\rho) = \operatorname{tr}_E(U(0\rangle \langle 0 \otimes \rho)U)$
n we minimize over	and calculate the unitary U explicitly. In the particular case $V \otimes V$
$ = \mu $.	$U = e^{itH}$ where $H = \frac{Y \otimes X}{2}$
$p = \mu_{\int}$.	Hence, it is possible to use 2 gates to achieve zero-error

The same lower estimate as of the LCU case holds with the resource set

 $S_{EA} = \{I, X, Y, Z\} \otimes \{I, X, Y, Z\} \quad \text{and} \quad$

Support for this project was provided by the Illinois Mathematics Lab and the Department of Mathematics.

 $M_{\alpha,\beta} \le 2n.$

epth m

red to simulate the evolution with the fixed error. The following is an

 $\overline{V_m} - |\psi'\rangle$

trash and upper estimates for the maxi-

age for the local Lindbladians. We to Suzuki. This allows us to show

 $128n^2$

 $1536n^2$

than 3, one will always overshoot nd for the length.

el a recent complexity concept for cost is of order n, the number of und. Hence,

del

lation of the system

 $U^*)$

ase,

 $-X\otimes Y$

r simulation and obtain

$$\mathcal{U} = \left\{ e^{its}, s \in S_{EA} \right\}$$

- well-defined nor known to be finite.
- the resource set as

$$\mathcal{U}' = \left\{ C - e^{it} \right\}$$

up to a constant.

- are the times that are hard to approximate with small depth.
- scaling problem.
- depth m gates.
- programmed in IBM machine and other platforms.

Open Problems (In Progress)

- from convex complexity harder to adapt for true, noisy open system models.
- muting ones.

References

- plexity of quantum channels, 2023.
- *Letters*, 123(7), August 2019.
- open system, 2022.
- plexity of quantum circuits, 2022.

Comments

I. Before the start of the IML project, $M_{\alpha,\beta}$ in the photon emission model was neither

2. It is possible to obtain a similar upper bound for the photon emission model if we take

 $^{itZ}, H, SWAP, CNOT$

3. Further research will give information about what the "bad" time t is. That means, what

4. With our particular choice of unitaries, the maximal depth of the random circuits is a

5. For upper estimates, we can replace the continuous expectation by a finite average of

6. In our LCU model the approximating unitaries are X and Z rotations, which can be

1. Find good unitaries for the case where $L = \sum_{i} L_{a_i}$ and the a_i are non-Hermitian. The need for extra environment makes the canoncial choice of good unitaries and the tools

2. Extending lower and upper bound for even larger classes of noise models beyond com-

[1] Roy Araiza, Yidong Chen, Marius Junge, and Peixue Wu. Resource-dependent com-

[2] Earl Campbell. Random compiler for fast hamiltonian simulation. *Physical Review*

[3] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu. Theory of trotter error with commutator scaling. *Physical Review X*, 11(1), February 2021.

[4] Marius Junge and Peixue Wu. Stability property for the quantum jump operators of an

[5] Lu Li, Kaifeng Bu, Dax Enshan Koh, Arthur Jaffe, and Seth Lloyd. Wasserstein com-